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ABSTRACT

The statl_-the.mt in Imttum _Uon fur such appli_tions as automatic target recognition and industrial robotic
vision tulles on digital Inuqle pmeeming. Digital image processing for automatic pattern recognition is very
comity intemive, involving feature extraction pegfonn_l via large matrix operations. Digital techniques
for _ objects regardless of their position, scale, and angular orientation are even more computationally
intrusive and rennet nm at real thne, Tbey also are net readily adaptive dne to the long time required to compute the
martin eqllu in digiud_

We prema ahigha-enlerneuralnetworkmodelandsol_wamwhichperfofmsthecompletefeatureextraction-pattern
claas_catlonImmdlgm requlmdforanmmatic pauem recognition.Using a third-orderneuralnetwork,we
demommmm completo,lOOq5ma:umteinvarisncetodistofdonsofscale,position,andin-planerotation.Ina higher-
ordw neuralnetwork,featureoxtr_tionisbuiltintothenetwork,and doesnothave tobe learned.Only the

relatively simple clesMfi_tion step must be learned. This is key to achieving very rapid training. The training set
is much smaller than with stmdmrd neural netwofk mftware because the higher-order network only has to be shown
one view of ew,h object tobe learned,net every pore/hieview.

The software and gnlphical meg/attaface nut on any Sun workstation. We also present results of the use of the
nemM software in a mm_mmus robotic vision system. Such a system could have extensive application in robotic
manufactuflng.

I. INTRODUCTION

Neural_ havebeeaappliedto various domains including speech recognition, trend analysis and forecasting,
procem monitoring, robot control, and object recognition. We present work in the position, scale, and rotation
invariant 0PSR1) object recognition domain. The objective in this domain is to recognize an object despite changes
in the object's position in the input field, size, of in-plane ofienta_on, as shown in Figure 1.

Paltern recognition may be viewed as a two part process of feature extraction followed by object classification[l-2].
First, n preliminary mapping from an image to n representation space is made, generally resulting in a significant
degree of dam reduction. A second mapping then operates on this reduced data to produce a classification or
estimation in an interpretation space. Historically, these steps have required mathematical mappings operating
directly on a detected image. However, digital image processing techniques are very computationally intensive,
require extensive computer calculations, and have difficulty handling full in-plane distcaion invariance.

Figure 1: PSRI object recognition. In the PSRI (position, scale, and rotation invariant) object recognition domain,
all four of these objects would be classified as a single object. Three distortions of the prototype in (a) are
shown. The object in (b) is a translated view, (c) is scaled, and (d) is rotated in-plane.
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In this paper we discuss higher order neural networks as implementations of the complete pattern recognition
operation. Higher -order neural networks can be designed to implement the extraction of simple but effective features
suitable for in-plane distortion invariance. Known geometric relationships are exploited and the desired invariances
are built directly into the architecture of the network. Building such domain specific knowledge into the network's
architecture results in a network which is We-trained and does not need to learn invariance to distortions. For each
new set of training objects, a HONN only needs to learn to distinguish between one view of each training object; it
does not need to be trained on all distorted views. Therefore, training time is reduced significantly from that
typically required for other neural models. Moreover, 100% recognition accmacy is guaranteed for noise-free images
characterized by the built-in distortions.

We explain how known relationships can be exploited and desired invariances built into the architecture of higher-
order neural networks, discuss some limitations of HONNs and how to overcome them, present simulation results

demonstrating the usefulness of HONNs with practical object recognition problems, discuss the performance of
HONNs with noisy test data, and present laboratory results of using a HONN to control a robot performing a
manufacturing task.

II. HIGHER-ORDER NEURAL NETWORKS

The output of a node, denoted by Yi for node i, in a general higher-order neural network is given by

Yi ffi 0 (Yj wij xj + Yj Yk Wijk xj Xk + Yj Yk Zl Wijkl xj Xk Xl + ...) (1)

where O(/) is a nonlinear threshold function such as the hard limiting Iransfer function given by

Yi ffi 1, iff > 0,

Yi = 0, otherwise,

(2)

the x's are the excitation values of the input nodes, and the interconuection matrix elements, w, determine the weight
that each input is given in the summation. Using information about relationships expected between the input nodes
under various distortions, the interconnection weights can be constrained such that invariance to given distortions is
built directly into the network architecture [3-7].

For instance, consider a second-order network as illustrated in Figure 2. In a second-order network, the inputs are
first combined in pairs and then the output is determined from a weighted sum of these products. The output for a
strictly second-order network is given by the function

Yi = 0 (]Cj ]_k Wijk xj Xk). (3)

Pattern recognition invariant to geometrical distortions in the object are achieved by constraining the values which

the weights wij k are allowed to take on.

As an example, each pair of input pixels combined in a second-order network define a line with a certain slope. As
shown in Figure 3, when an object is moved or scaled, the two points in the same relative positions within the

Yi

x 1 x 2 x 3 x 4

Figure 2: Second-order neural network. In a second-order neural network, the inputs are first combined in pairs (at
X) and the output is determined from a weighted sum of these products.
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object still foan the endpoints of a line with the same slope. If all pairs of points which define the stone slope are
connected to the output node using the same weight, the network will be invariant to distortions in scale and
translation. In particular,for two pairs of pixels (j, k) and (1, m), with coordinates(xj, yj), (Xk, Yk), (Xl Yl), and
(Xm,Ym) respectively, the weights are constrained according to

Wijk = Wiim, if (Yk - Yj) / (xk - xj) ffi(Ym - Yl) / (Xm - xl).

Alternatively, the pair of points combined in a so_md-order network may define a distance. As shown in Figure 4,
when an object is moved or romed within a plane, the distance between a pair of points in the same relative position
on the object does not change. If all pairs of points which are separated by equal distances are connected to the
output with the same weight, the network will be invariant to translation and in-plane rotation distortions. The
weights for this set of invm2mces are constrained according to

Wijk = Wilm, if lldjkll= lldlmll. (5)

That is. the magnitude of the vector defined by pixeis j and k (djk) is equal to the magnitude of the vector defined by
pixels I and m (dim).

To achieve invariancc to Uanslation, scale, and in-plane rotation simultaneously, a third-order network can be used.
The outputfora strictlythird-c_icr network, is given by the function

Yi= 8 (Yj Yk _1 Wijklxj Xk Xl). (6)

Each set of input pixel triplets forms a triangle with some included angles (a, p, T). as shown in Figure 5. When
an object is translated, scaled, or rotated in-plane, the three points in the same relative positions on the object still

•form the included angles (a, [3,T). In order to achieve invariance to all three distortions, all sets of triplets forming
similar triangles are connected to the output with the same weight. That is, the weight for the triplet of inputs (j, k,
1) is constrained to be a function of the associated included angles (a, [3,T) such that all elements of the alternating
group on threeelements (group A3) are equal

Wijkl = w(i,a, J3,'y)= w(i,_,¥,a) = w(i,¥,a,l$). (7)

The fact that HONNs are capable of providing nonlinear separation using only a single input layer and a single
output layer, with no hidden layer of nodes required, allows them to be Irained using a simple rule of the form

A Wijkl = (ti - Yi) xj Xk Xl, (s)

where the expected training output, t, the actual output, y, and the inputs, x, are all binary.

Figure 3: Translation and scale invariance in a second-
order network. By conslraining the network such that
all pairs of points which define equal slopes use equal
weights, translation and scale invariance are
incorlXn_ into a secend-order hemal network.

Figure 4: Translation and rotation invariance in a
secoud-order network. By constraining the network
such that all pairs of points which are equal distsnccs
away use equal weights, translation and rotation
invariances are incorporated into a second-order
network.
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Figure 5: PSRI recognition with a third-c_k,r neural
network. As long as all similar trimigles are
connected to the output with the same weight, a third-
order network will be invarlant to scale, in-plane
rotation, and Iranslation distortions.

Traatas ,et Examplete,tpatterns

Figure 6: Training set and sample test patterns for
distinguishing a "T" and a "C", invariant to
translation, scale, and rotation.

The main advantage of building invariance to geometric distortions directly into the architecture of the network is
that the network is forced to treat all disumed views of an object as the same object. Distortion invariance is
achieved before any input vectors are presented to the network. Thus, the network needs to learn to distinguish
between just one view of each object, not numerous distorted views, which leads to rapidconvergence.

Software Results: Fully-connected Networks

We developed third-ord_ network softwm'e using a Sun 3/60 workstation, where the third-ordernetwork was designed
for scale, translation, and in-plane rotation invariance in a 9x9 pixel input field, giving 81 input nodes. The network
had just one output node and one input layer. To build in invariance to distortions in scale, translation, and in-plane
rotation, the weights were constrained according to Eq. (7) and the network was trained using the rule in Eq. (8).

The network was trained on just one view of each of the objects it was required to learn. In particular, we Wained the
network on the T/C recognition problem. As explained in Rumeihart [8], in the T/C problem, both objects are
constructed of 5 sqma'es, as illustrated in Figure 6, and the problem is to discriminate between them independent of
translation or 90 degree rotations. In our work, the network was also required to distinguish between the objects
invariant to disto_us inscale.

The network learned to distinguish between all distorted views of a "T"and a "C"after just I0 passes through the
training set, requiring less than 60 seconds on a Sun 3/60. The network was trained on just one view of a "T"and
one view of a "C", as shown in Figure 6. Nevmheless, because the invariances are built into the architecture of the
network, it was able to distinguish between the two characters regardless of their position in the input field, 90
degree rotations, or changes in size over a factor of three. In principle, recognition is invariant for any rotation
angle, given sufficient resolution to draw the objects accurately.

HI. EXPANDING TO PRACrICAL IMAGE SIZES

The advantages of HONNs stem from the fact that known relationships are incorporated directly into the architecture
of the network. The network weights ate constrained by this domain specific knowledge. Thus, fewer training
passes and a smaller training set are necessary to learn to distinguish between the training objects.

The assumption behind _g specific knowledge into a network is that the weight values determined by the
learning process result in the same ont"lmt for one view of an object and a distorted view of the same object.
Specifically, in our work, we assumed that the relationship expressed by Eq. (7), that all similar triangles have the
same weight, constrained the network sufficiently so that an object and a distorted view of the same object would
produce the same output. Using this relationship, we demonslrated that a third-order network can achieve
simultaneous invariance to translation, in-plane rotation, and scale on the T/C recognition problem in a 9x9 pixei
input field. Unfortunately, due to the finite resolution of actual images [7], Eq. (7) conslrains the network adequately
only in this limited domain but not when using a more general set of objects or a larger input field. Invariance to
object scale changes can be lost when using larger image field sizes.

328



Problems arising from finite image resolution can be largely overcome by using edge-only images, as shown in
Figure 7, and by restricting the resolution to which the angles ct, 13,and 7 are calculated. We have shown that for a
36x36 pixel input field, angles need to be rounded to the nearest 20° in order for test objects to be recognized when
scaled down to 50% of the training image size. As the input field is increased to 80x80 pixels, the angle resolution
can be increased to the nearest 10°. Further increasing the input field resolution to 127x127 pixels allows the angle
resolution to increase to 5°. Thus, with larger input fields, both the image resolution and the resolution to which ct,
13,and ? am calcalated can be inereased.

A greater constraint on increasing the size of images which can be evaluated using HONNs is the amount of storage
required to implement the network. A network with M inputs and one output using only rth order terms requires

M-choose-r interconnections. For large M, this number, which is on the order of Mr, is clearly excessive, as some

storage must be used to associate each triplet of_pizels with a set of included angles. In an NxN pixel input field,
combinations of three pixels can be chosen in N_-choese-3 ways. Thus, for a 9x9 pixel input field, the number of
possible triplet combinations is 81-choose-3 or 85320. Increasing the resolution to 128x128 pixels increases the
number of possible interemmections to 1282-choose-3 or 7.3x101 I, a number too great to store on most machines.
On our Sun 3/60 with 30 MB of swap space, we can store a maximum of 5.6 million (integer) interconnections,
limiting the input field size for fully comtected third-ordsr netwodm to 18x18 pixels. Furthermore, this number of
interconnections (-1012) is far too large to allow a parallel implementation in any hardware technology that will be
commonly available in the foreseeable future.

A coarse coding algorithm [7.9] can be used to permit an input field size practical for object recognition problems.
The coarse coding algmithm involves overlaying fields of coarser pixels in order to represent an input field composed
of smaller pizels, as shown in Figure 8. Figure 8a shows an input field of size 10xl0 pixels. In Figure 9b, we
show two offset but overlapping fields, each of size 5x5 "coarse"pixels. In this case, each coarse field is composed
of pixels which are twice as large (in both dimensions) as in Figure 8b. To reference an input pixel using the two
coarse fields requires two sets of coordinates. For instance, pixel (x=7, y=6) on the original image would be
referenced as the set of coarse pixels ((x=D, _ & (x--III, y=IIl)), assuming a coordinate system of (A, B, C, D, E)
for coarse field one and (I, II, III, IV, V) for coarse field two. This is a one-to-one transformation. That is, each
pixel on the original image can be represented by a unique set of coarse pixels.

This Iransformation of an image to a set of smaller images can be used to greatly increase the resolution possible in
a higher-order neural network. For example, a fully connected third-order network for a 10xl0 pixel input field
requires 102-choose-3 or 161,700 interconnections. Using 2 fields of 5x5 coarse pixels requires just 52-choose-3 or
2300 ir _rconnections, accessed once for each field. The number of required interconnections is reduced by a factor of
-70. For a larger input field, the savings me even greater. For instance, for a 100xl00 pixei input field, a fully
connected third-order network requires 1.6x1011 interconnections. If we represent this field as 10 fields of 10xl0
coarse pixels, only 161300 in_tions are necessm'y. The number of interconnections is decreased by a factor
of -100,000.

The relationship between number of coarse fields, n, input field size, IFS, and coarse field size, CFS, in each
dimension is given by [7,9]

IFS = (CFS * n) - (n - 1). (9)

Figure 7: A binmy edge-only representation of a Space Shuttle orbiter and an SR-71 aircraft, drawn in a 127x127
pixel window.
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Training of the network proceeds in the usual way with one modification: the uansfer function thresholds the value
obtained from summing the weighted triangles over a/l coarse images associated with each training object. That is,

y= I, if (Y..n(Zj Y-kY-IWjld xj Xk xl)] >0,
y = O,otherwise, (lo)

where j, k, and ! range from one to the coarse pixel size squared, n ranges from one to the number of coarse fields,
the x's represent coarse pixel values, and Wjkl represents the weight associated with the triplet of inputs (j, k,/).
During testing, an input image is transformed into a set of coarse images. Each of these "coarser" vectors are then
presented to the network and an output value determined using Eq. (10).

Software results: coarse-axl_ netwmks

We evaluated the coarse coding technique using an expanded version of the T/C problem. Implementing coarse
coding, we increased the input image resolution for the T/C problem to 127x127 pixels using 9 fields of 1Sxl5
coarse pixeis. The network was trained on just two images: the largest "T"and "C"possible within the input field,
and training took just five passes.

A complete lest set of translated, scaled, and one degree rotated views of the two objects in a 127x127 pixel input
field consists of -135 million images. Assuming a test rate of 200 images per hour, it would ___keabout 940
computer-months to test all possible views. Accordingly, we limited the testing to a representative subset
consisting of four sets:
(I) All translated views, but with the same orientation and scale us the training images.
(2) All views rotated in-plane at 1" intervals, centered at the same position as the training images but only 60% of

the size of the training images.
(3) All scaled views of the objects, in the same orientation and centered at the same position as the training images.
(4) A representative subset of uppmximately 100 simultaneously translated, rotated, and scaled views of the two

objects.

The network achieved 100% accuracy on all test images in sets (I) and (2). Furthermore, the network recognized,
with 100% accuracy, all scaled views, from test set (3), down to 38% of the original size. Objects smaller than 38%
were all classified as C's. Finally, for test set (4), the network correctly recognized all images larger than 38% of the
original size, regardless of the orientation or position of the test image.

A third-order network also learned to distinguish between practical images such as a Space Shutde Orbiter versus an
SR-71 aircraft (Figure 7) in up to a 127x127 pixel input field. In this case, training took just six passes through the
training set, which consisted of just one (binary, edge-only) view of each aircraft. As for the T/C woblem, the
network achieved 100% recognition accuracy of u'anslated and in-plane rotated views of the two images.
Additionally, the network recognized images scaled to almost half the size of the training images, regardless of their
position or orientation.
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Figure 8: Example of a course-coded input field. (a) A 10xl0 pixel input field. (b) Two fields of 5x5 coarse pixels.
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The maximum input field resolution possible with coarse coded HONNs has not yet been reached. We ran
simulations on the T/C problem coded with a variable number of 3x3 coarse pixels. A third-order network was able
to learn to distinguish between the two characters in less than ten passes in an input field size of up to 4095x4095
pixels using 2047 fields. We expect a resolution of 4096x4096 is sufficient for most object recognition tasks.
Notwithstanding, we also expect greater resolution is possible.

IV. TOLERANCE TO NOISE

All the demouslrations discussed so far showed the performance of HONNs in a noise-free environment. In this
section, we discuss the recognition accuracy of HONNs with non-ideal lest images. We consider white Gaussian
noise and occlusion.

We evaluated the perfommnce of HONNs with noisy images on two object recognition problems: an SR-71/U-2
discrimination problem and an SR-71/Slmce Shuttle discrimination problem. All simulations used a coarse-coded
third-order network designed for a 127x127 pixel input field. We used 9 fields of 15x15 coarse pixels and a
resolution of 10" for the angles a, Jl,and Tin Eq. (2), which allowed scale invarlance ovm"the range between 70%
and 100% of the original image size. Each instantiation of the network was trained on just one binary, edge-only
view of each object, as shown in Figure 10a, and Iraining required less than ten passes through the training set.

The training sets were generated from 8-bit gray level images of actual models of the aircraft. The images were
thresholded to produce binary inmses, and then edge detected using a digital Luplaclan convolution filter with a
positive derivative to produce the silhouettes shown in Figure 9a. For rotated and scaled views of the objects, the
original gray level images were first scaled, then rotated, and then thresholded and edge-detected. Test images were
positioned arbilrarily to validate the Irauslafion invariance of the network. Notice that the profiles of the SR-71 and
Space Shuttle are somewhat similar whereas those of the SR-71 and U-2 are very different.

White Gaussian Noke

To test the tolmance of higher-order neural netwoAs to white noise, each instantiation of the network (one for the
SR-71/U-2 problem and one for the Shuttle/SR-71 problem) was tested on 1200 images generated by modifying the
8-bit gray level values of the original images using a Ganssian distribution of random numbers with a mean of 0 and
a standard deviation of between I mad50. The noisy images were then geometrically distorted, binarized, and edge-
enhanced. Typical test images which were correctly identified are shown in Figure 9b.

The results are summarized in Figure 10. The network performed with 100% accuracy for our test set for a standard
deviation of up to 23 on the SR-71/U-2 problem and 26 on the Shuttle/SR-71 problem. For the similar images of
the Shuttle and SR-71, the recognition accuracy quickly decreased to 75% at a o of 30 and to 50% (which

to no better than random guessing) for o greater than 33. The SR-71/U-2 remained above 75% accuracy
up to a _ of 35 (or -14% of the gray level range) and gradually decreased to 50% at a o of 40 (or -16% of the gray
level range). If we ¢le./'me"good ICNrfomtance"as greater Ilum75% accuracy, HONNs have good performance for o up
tO35 (or -14_ of the gray level range) for images with very distinct profiles and o up to 30 (or -12% of the gray
level range) for images with similar l_'ofiles.

t_lmion

To test the tolerance of HONNs to occlusion, the two inslantiations (one for the Shuttle/SR-71 problem and one for
the SR-71/U-2 problem) of the third-ordernetwork built to be invariant to scale, in-plane rotation, and translation as
described above were tested on occluded versions of the image pairs. We started with binary, edge-only images and
added automatically-generated occlusions based on four variable parmneters: the size of the occlusion, the number of
occlusions, the type of occlusion, and the position of the occlusion. Objects used for occlusion were squares with a
linear dimension between one pixei and twenty-nine pixels. The number of occlusion objects per image varied from
one to four, and the randomly chmen type of occlusion determined whether the occlusion objects were added to or
subtracted from the original image. Finally, the occlusions were randomly (uniform distribution) placed on the
profile of the training images. The test set consisted of I0 samples for each combination of scale, rotation angle,
occlusion size, and number of occlusions for a total of 13,920 test images per training image or 27,840 test images
per recognition problem. Typical test images are shown in Figure 9c.
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(c)

Figure 9: Training images in 127x127 pix¢l fields. (a) Binary edge-only training images of Space Shuttle
Orbits, SR-71, and U2. Co)Gemnelrically dislorlcd and noisy test _ correctly identified.
(c) _y disu_ and occluded teat imsp= comfy identified.

0 10 20 30 40 50

Stsndsrd Devlatlon

Figure 10: Tolerance of HONNs to white Oaussian noise. Each instantiation of a third-older network (one for the
SR-71/U-2 problem and one far the Shuttle/SR-71 problem) was tested on 1200 test images generated by
modifying lhe 8-bit gray level values of scaled, rotated and translated versions of the original Iraining images
using a Gaus.qmt distribution of random nmnbers with a mean of 0 and a standarddeviation between 1 and 50.
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The performance of HONNs with occluded test images depends mostly on the number and size of occluding objects
and to a lesser degree on the similarity of the training images. In the case of the Shuttle/SR-71 recognition
problem, the network performed with 100% accuracy for our test set for one 16 pixel occlusion and up to four I0
pixel occlusions. It performed with better than 75% accuracy ("good performance") for up to four 19 pixel
occlusions, three 21 pixel occlusions, two 24 pixel occlusions, and one 29 pixel occlusion.

For the SR-71/U-2 problem, the network exhibited good performance for the entire test set but achieved 100%
accuracy only for one 4 pixel occlusion and up to four 3 pixel occlusions.

V. APPLICATION TO ROBOTIC VISION FOR MANUFACTURING

Vision processing is one of the most computationally intensive tasks required of an autonomous or semi-
autonomous robot. A vision system based on a parallel implementation of a higber-order neural network can be
used to perform one of the most difficult functions required of a general robotic vision system, distortion invariant
object recognition, and can perform fast enough to keep pace with incoming sensor data. At Ames Research Center
we have developed a robotic vision processing system to test concepts and algorithms for autonomous construction,
inspection, and maintenance of space based habitats.

The benchmark task of the system is to allow a robot arm to identify and grasp an arbitrary tool moving in space
with all six degrees of freedom without using any kind of cooperative marking techniques for the vision system.
This is representative of one task required from the Flight Telerobotic Servicer (FTS) or the EVA Retriever, both of
which are robots designed to operate in a weightless environment. A higher-order neural network can satisfy the first
system task of object identification, after which other image processing sub-systems perform the tasks necessary to
allow grappling.

We have tested a HONN-based vision system in the control of a Microbot robotic arm. The task was a subset of the
benchmark task of allowing a robot arm to identify, track, and grasp an arbitrary tool without using any kind of
cooperative marking techniques for the vision system. The robot ann carries a camera to observe the workspacc
below it, as shown in Figure 11.

The vision system task was to find one of a set of tools, as shown in Figure 12. The object set consists of five
common tools and a structural component designed for automated in-space assembly. The work area is draped in
black cloth to conU'ol the amount of background clutter. The robot was directed to look at each "bin" space in the
work area, and to identify the tool located there. The tool could be located at any location within the bin, could be
rotated in-plane. The camera height was not held constant, so the tools had varying apparent size. When the desired
tool was found, a grappling operation was initiated.

This system also demonstrates the capability of HONN-based vision for a part/product identification task on a
manufacturing assembly line. For example, parts on an assembly line passing below a camera could be quickly
identified, regardless of their position, orientation, and (if need be) size.

SlrUCtund Commment C_mnel Lock C Clamp

Figure 11: Photograph of the table top 5 degree-of-
freedom Microbot arm and the work surface. The
camera is attached to the writst of the arm

Vbm Grip Box Wnmch Open-Ended Wnmch

Figure 12: Binarized images of tools for recognition
by the HONN vsion system, the images are edge-
enhanced before being input to the HONN.
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VI. CONCLUSIONS

We have shown that third-order mural networks can be trained to distinguish between two objects regardless of their
position, angular orientation, or scale and achieve 100% accuracy on test images characterized by built-in distortions.
Only one view of each object is required for learning and the network successfully learned to distinguish between all
distorted views of the two objects in tens of passes, requiting only minutes on a Sun 3/60 workstation. In contrast,
other neural network approaches require thousands of passes through a training set consisting of a much larger
number of training images.

The major limitations of HONNs is that the size of the input field is limited because of the memory required for the
large number of interconnections in a fully connected network. To circumvent this limitation, we developed a coarse
coding algorithm which allows a third-order network to be used with a practical input field size of at least 4096x4096
pixels while retaining its ability to recognize images which have been sealed, translated, or rotated in-plane.

We explored the tolerance of higher-order neural networks (HONNs) to white Gaussian noise and to occlusion. We
demonstrated that for images with an ideal separation of background/foreground gray levels, it takes a great amount
of white noise in the gray level images to affect the binary, edge-only images used for training and testing the
system to a sufficient degree that the performance of HONNs was seriously degraded. HONNs are also robust with
respect to occlusion.

A third order neural network has been demonstrated in the laboratory for the control of a robot performing a typical
manufacturing task of part identification. Our current research aims to extend the capabilities of this vision system
by training a third order to recognize out-of-plane rotated versions of a training object. With scale, position, and in-
plane rotation invarianee built into the architecture, and out-of-plane invariance learned, a full six degree of freedom
vision system can be achieved. In addition, we are working on a implementation of a third order network on a
parallel processor, which will allow the identification of objects in a 128x128 pixel image at full video (60 Hz)
rates.

All our current software runs on any Sun workstation, either a Sun 3/60 or a SPARC system. This software will
soon by available through COSMIC, the U.S. Government's software distribution facility.
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